// Utility function to replace all non-zero values in a matrix by 1
void resetMatrix(int mat[][N])
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
// Utility function to find the maximum of two numbers
// Function to calculate the area of the largest rectangle of 1's where swapping of
int findMaxRectArea(int mat[][N])
// update the matrix to store the counts of consecutive 1's present in each column
for (int j = 0; j < N; j++)
// process each column from bottom to top
for (int i = M - 2; i >= 0; i--)
mat[i][j] = mat[i+1][j] + 1;
// keep track of the largest rectangle of 1's found so far
// traverse each row in the modified matrix to find the maximum area
for (int i = 0; i < M; i++)
// create a count array for each row `i`
int count[M + 1] = { 0 };
for (int j = 0; j < N; j++)
// increment value in the count array using the current element
// the area can be calculated by multiplying the current
// element `mat[i][j]` with the corresponding value
// in the count array `count[mat[i][j]]`
maxArea = max(maxArea, mat[i][j] * count[mat[i][j]]);
// reset matrix before returning
printf("The area of the largest rectangle of 1's is %d", findMaxRectArea(mat));
#include <stdio.h>
#include <limits.h>
// `M × N` matrix
#define M 4
#define N 5
// Utility function to replace all non-zero values in a matrix by 1
void resetMatrix(int mat[][N])
{
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
if (mat[i][j] != 0) {
mat[i][j] = 1;
}
}
}
}
// Utility function to find the maximum of two numbers
int max(int x, int y) {
return (x > y) ? x : y;
}
// Function to calculate the area of the largest rectangle of 1's where swapping of
// columns is allowed
int findMaxRectArea(int mat[][N])
{
// update the matrix to store the counts of consecutive 1's present in each column
for (int j = 0; j < N; j++)
{
// process each column from bottom to top
for (int i = M - 2; i >= 0; i--)
{
if (mat[i][j] == 1) {
mat[i][j] = mat[i+1][j] + 1;
}
}
}
// keep track of the largest rectangle of 1's found so far
int maxArea = 0;
// traverse each row in the modified matrix to find the maximum area
for (int i = 0; i < M; i++)
{
// create a count array for each row `i`
int count[M + 1] = { 0 };
// process row `i`
for (int j = 0; j < N; j++)
{
if (mat[i][j] > 0)
{
// increment value in the count array using the current element
// as an index
count[mat[i][j]] += 1;
// the area can be calculated by multiplying the current
// element `mat[i][j]` with the corresponding value
// in the count array `count[mat[i][j]]`
maxArea = max(maxArea, mat[i][j] * count[mat[i][j]]);
}
}
}
// reset matrix before returning
resetMatrix(mat);
return maxArea;
}
int main(void)
{
int mat[M][N] =
{
{0, 0, 1, 0, 1},
{0, 1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 1, 1, 1, 1},
{0, 0, 1, 1, 1}
};
printf("The area of the largest rectangle of 1's is %d", findMaxRectArea(mat));
return 0;
}
</limits.h></stdio.h>
#include
#include
// `M × N` matrix
#define M 4
#define N 5
// Utility function to replace all non-zero values in a matrix by 1
void resetMatrix(int mat[][N])
{
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
if (mat[i][j] != 0) {
mat[i][j] = 1;
}
}
}
}
// Utility function to find the maximum of two numbers
int max(int x, int y) {
return (x > y) ? x : y;
}
// Function to calculate the area of the largest rectangle of 1's where swapping of
// columns is allowed
int findMaxRectArea(int mat[][N])
{
// update the matrix to store the counts of consecutive 1's present in each column
for (int j = 0; j < N; j++)
{
// process each column from bottom to top
for (int i = M - 2; i >= 0; i--)
{
if (mat[i][j] == 1) {
mat[i][j] = mat[i+1][j] + 1;
}
}
}
// keep track of the largest rectangle of 1's found so far
int maxArea = 0;
// traverse each row in the modified matrix to find the maximum area
for (int i = 0; i < M; i++)
{
// create a count array for each row `i`
int count[M + 1] = { 0 };
// process row `i`
for (int j = 0; j < N; j++)
{
if (mat[i][j] > 0)
{
// increment value in the count array using the current element
// as an index
count[mat[i][j]] += 1;
// the area can be calculated by multiplying the current
// element `mat[i][j]` with the corresponding value
// in the count array `count[mat[i][j]]`
maxArea = max(maxArea, mat[i][j] * count[mat[i][j]]);
}
}
}
// reset matrix before returning
resetMatrix(mat);
return maxArea;
}
int main(void)
{
int mat[M][N] =
{
{0, 0, 1, 0, 1},
{0, 1, 1, 1, 1},
{1, 1, 1, 1, 1},
{1, 1, 1, 1, 1},
{0, 0, 1, 1, 1}
};
printf("The area of the largest rectangle of 1's is %d", findMaxRectArea(mat));
return 0;
}
#include <bits stdc++.h="">
bool sortby(const pair<int, int="">& a,
const pair<int, int="">& b)
return a.first < b.first;
return (a.second < b.second);
bool kOverlap(vector<pair<int, int=""> > pairs, int k)
vector<pair<int, int=""> > vec;
for (int i = 0; i < pairs.size(); i++) {
vec.push_back(make_pair( pairs[i].first, -1 ));
vec.push_back(make_pair( pairs[i].second, +1 ));
sort(vec.begin(), vec.end());
stack<pair<int, int=""> > st;
for (int i = 0; i < vec.size(); i++) {
pair<int, int=""> cur = vec[i];
vector<pair<int, int=""> > pairs;
for(int i=0;i<n;i++) {="" cin="">>x>>y;
pairs.push_back(make_pair(x,y));
cout<<"Yes"<<endl; else="" {="" cout<<"no"<<endl;="" }="" return="" 0;="" <="" pre="">
<!-- /wp:enlighter/codeblock -->
</endl;></n;i++)></pair<int,></int,></pair<int,></pair<int,></pair<int,></int,></int,></bits>
#include <bits stdc++.h="">
using namespace std;
bool sortby(const pair<int, int="">& a,
const pair<int, int="">& b)
{
if (a.first != b.first)
return a.first < b.first;
return (a.second < b.second);
}
bool kOverlap(vector<pair<int, int=""> > pairs, int k)
{
vector<pair<int, int=""> > vec;
for (int i = 0; i < pairs.size(); i++) {
vec.push_back(make_pair( pairs[i].first, -1 ));
vec.push_back(make_pair( pairs[i].second, +1 ));
}
sort(vec.begin(), vec.end());
stack<pair<int, int=""> > st;
for (int i = 0; i < vec.size(); i++) {
pair<int, int=""> cur = vec[i];
if (cur.second == -1) {
st.push(cur);
}
else {
st.pop();
}
if (st.size() >= k) {
return true;
}
}
return false;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,k;
cin>>n>>k;
vector<pair<int, int=""> > pairs;
int x,y;
for(int i=0;i<n;i++) {="" cin="">>x>>y;
pairs.push_back(make_pair(x,y));
}
if(kOverlap(pairs,k))
cout<<"Yes"<<endl; else="" {="" cout<<"no"<<endl;="" }="" return="" 0;="" <="" pre="">
<!-- /wp:enlighter/codeblock -->
</endl;></n;i++)></pair<int,></int,></pair<int,></pair<int,></pair<int,></int,></int,></bits>
#include
using namespace std;
bool sortby(const pair& a,
const pair& b)
{
if (a.first != b.first)
return a.first < b.first;
return (a.second < b.second);
}
bool kOverlap(vector > pairs, int k)
{
vector > vec;
for (int i = 0; i < pairs.size(); i++) {
vec.push_back(make_pair( pairs[i].first, -1 ));
vec.push_back(make_pair( pairs[i].second, +1 ));
}
sort(vec.begin(), vec.end());
stack > st;
for (int i = 0; i < vec.size(); i++) {
pair cur = vec[i];
if (cur.second == -1) {
st.push(cur);
}
else {
st.pop();
}
if (st.size() >= k) {
return true;
}
}
return false;
}
int main()
{
int t;
cin>>t;
while(t--)
{
int n,k;
cin>>n>>k;
vector > pairs;
int x,y;
for(int i=0;i>x>>y;
pairs.push_back(make_pair(x,y));
}
if(kOverlap(pairs,k))
cout<<"Yes"<
static int maxHist(int R, int C, int row[])
/* Create an empty stack. The stack holds indexes of
hist[] array/ The bars stored in stack are always
in increasing order of their heights. */
Stack<integer> result = new Stack<integer>();
// Run through all bars of given histogram (or row)
// If this bar is higher than the bar on top
// stack, push it to stack
|| row[result.peek()] <= row[i])
/* If this bar is lower than top of stack,
then calculate area of rectangle with
stack top as the smallest (or minimum
height) bar. 'i' is 'right index' for the
top and element before top in stack is
top_val = row[result.peek()];
= top_val * (i - result.peek() - 1);
max_area = Math.max(area, max_area);
/* Now pop the remaining bars from stack and
calculate area with every popped bar as the smallest bar */
top_val = row[result.peek()];
area = top_val * (i - result.peek() - 1);
max_area = Math.max(area, max_area);
// Returns area of the largest rectangle with all 1s in A[][]
static int max(int R, int C, int A[][])
// Calculate area for first row and initialize it as result
int result = maxHist(R, C, A[0]);
/* iterate over row to find maximum rectangular area
considering each row as histogram */
for (int i = 1; i < R; i++)
for (int j = 0; j < C; j++)
// if A[i][j] is 1 then add A[i -1][j]
// Update result if area with current row (as
// last row of rectangle) is more
result = Math.max(result, maxHist(R, C, A[i]));
public static void main(String[] args)
System.out.print("Area of maximum rectangle is "+ max(R, C, A));
import java.util.*;
class maxRectangle
{
static int maxHist(int R, int C, int row[])
{
/* Create an empty stack. The stack holds indexes of
hist[] array/ The bars stored in stack are always
in increasing order of their heights. */
Stack<integer> result = new Stack<integer>();
int top_val;
int max_area = 0;
int area = 0;
// Run through all bars of given histogram (or row)
int i = 0;
while (i < C)
{
// If this bar is higher than the bar on top
// stack, push it to stack
if (result.empty()
|| row[result.peek()] <= row[i])
result.push(i++);
else {
/* If this bar is lower than top of stack,
then calculate area of rectangle with
stack top as the smallest (or minimum
height) bar. 'i' is 'right index' for the
top and element before top in stack is
'left index' */
top_val = row[result.peek()];
result.pop();
area = top_val * i;
if (!result.empty())
area
= top_val * (i - result.peek() - 1);
max_area = Math.max(area, max_area);
}
}
/* Now pop the remaining bars from stack and
calculate area with every popped bar as the smallest bar */
while (!result.empty())
{
top_val = row[result.peek()];
result.pop();
area = top_val * i;
if (!result.empty())
area = top_val * (i - result.peek() - 1);
max_area = Math.max(area, max_area);
}
return max_area;
}
// Returns area of the largest rectangle with all 1s in A[][]
static int max(int R, int C, int A[][])
{
// Calculate area for first row and initialize it as result
int result = maxHist(R, C, A[0]);
/* iterate over row to find maximum rectangular area
considering each row as histogram */
for (int i = 1; i < R; i++)
{
for (int j = 0; j < C; j++)
// if A[i][j] is 1 then add A[i -1][j]
if (A[i][j] == 1)
A[i][j] += A[i - 1][j];
// Update result if area with current row (as
// last row of rectangle) is more
result = Math.max(result, maxHist(R, C, A[i]));
}
return result;
}
public static void main(String[] args)
{
int R = 4;
int C = 4;
int A[][] = {
{ 0, 1, 1, 0 },
{ 1, 1, 1, 1 },
{ 1, 1, 1, 1 },
{ 1, 1, 0, 0 },
};
System.out.print("Area of maximum rectangle is "+ max(R, C, A));
}
}
</integer></integer>
import java.util.*;
class maxRectangle
{
static int maxHist(int R, int C, int row[])
{
/* Create an empty stack. The stack holds indexes of
hist[] array/ The bars stored in stack are always
in increasing order of their heights. */
Stack result = new Stack();
int top_val;
int max_area = 0;
int area = 0;
// Run through all bars of given histogram (or row)
int i = 0;
while (i < C)
{
// If this bar is higher than the bar on top
// stack, push it to stack
if (result.empty()
|| row[result.peek()] <= row[i])
result.push(i++);
else {
/* If this bar is lower than top of stack,
then calculate area of rectangle with
stack top as the smallest (or minimum
height) bar. 'i' is 'right index' for the
top and element before top in stack is
'left index' */
top_val = row[result.peek()];
result.pop();
area = top_val * i;
if (!result.empty())
area
= top_val * (i - result.peek() - 1);
max_area = Math.max(area, max_area);
}
}
/* Now pop the remaining bars from stack and
calculate area with every popped bar as the smallest bar */
while (!result.empty())
{
top_val = row[result.peek()];
result.pop();
area = top_val * i;
if (!result.empty())
area = top_val * (i - result.peek() - 1);
max_area = Math.max(area, max_area);
}
return max_area;
}
// Returns area of the largest rectangle with all 1s in A[][]
static int max(int R, int C, int A[][])
{
// Calculate area for first row and initialize it as result
int result = maxHist(R, C, A[0]);
/* iterate over row to find maximum rectangular area
considering each row as histogram */
for (int i = 1; i < R; i++)
{
for (int j = 0; j < C; j++)
// if A[i][j] is 1 then add A[i -1][j]
if (A[i][j] == 1)
A[i][j] += A[i - 1][j];
// Update result if area with current row (as
// last row of rectangle) is more
result = Math.max(result, maxHist(R, C, A[i]));
}
return result;
}
public static void main(String[] args)
{
int R = 4;
int C = 4;
int A[][] = {
{ 0, 1, 1, 0 },
{ 1, 1, 1, 1 },
{ 1, 1, 1, 1 },
{ 1, 1, 0, 0 },
};
System.out.print("Area of maximum rectangle is "+ max(R, C, A));
}
}
for i in range(len(pairs)):
vec.append([ pairs[i][0], -1 ])
vec.append([ pairs[i][1], +1 ])
for i in range(len(vec)):
for _ in range(int(input())):
n, k =map(int,input().split())
pairs.append(list(map(int,input().split())))
def sortby(a, b):
if (a[0] != b[0]):
return a[0] < b[0]
return (a[1] < b[1])
def kOverlap(pairs, k):
vec = []
for i in range(len(pairs)):
vec.append([ pairs[i][0], -1 ])
vec.append([ pairs[i][1], +1 ])
vec.sort()
st = []
for i in range(len(vec)):
cur = vec[i]
if (cur[1] == -1):
st.append(cur)
else:
st.pop()
if (len(st) >= k):
return True
return False
for _ in range(int(input())):
n, k =map(int,input().split())
pairs = []
for i in range(n):
pairs.append(list(map(int,input().split())))
if kOverlap(pairs, k):
print("Yes")
else:
print("No")
def sortby(a, b):
if (a[0] != b[0]):
return a[0] < b[0]
return (a[1] < b[1])
def kOverlap(pairs, k):
vec = []
for i in range(len(pairs)):
vec.append([ pairs[i][0], -1 ])
vec.append([ pairs[i][1], +1 ])
vec.sort()
st = []
for i in range(len(vec)):
cur = vec[i]
if (cur[1] == -1):
st.append(cur)
else:
st.pop()
if (len(st) >= k):
return True
return False
for _ in range(int(input())):
n, k =map(int,input().split())
pairs = []
for i in range(n):
pairs.append(list(map(int,input().split())))
if kOverlap(pairs, k):
print("Yes")
else:
print("No")