Last Updated on December 13, 2022 by Prepbytes
This article will discuss in detail how to convert binary tree to doubly linked list. Conversion of binary tree to doubly linked list is an amazing task, which will improve your data structures skills that will help you to achieve your aim. Let’s discuss how to convert convert binary tree to doubly linked list.
How To Convert Binary Tree To Doubly Linked List
In this problem, we are given a binary tree. We have to convert the given binary tree to a doubly-linked list.
We have to store the inorder traversal of the given binary tree in the newly created linked list.
Sample Input:
Sample Output:
Explanation:
The output doubly linked list contains the in-order traversal of the given binary tree.
We should note that the order of the nodes in the doubly linked list must be the same as the in-order traversal of the binary tree. The first node of the in-order traversal must be the head of the doubly linked list. The left and right pointers will be used as previous and next pointers, respectively. Let us have a glance at the approach.
Approach#1 To Convert Binary Tree To Doubly Linked List
In this approach, we will traverse do an inorder traversal of the binary tree. We will add the nodes at the beginning of the newly created linked list, and update the head every time. But there is a problem. Since we will insert at beginning, the order or the linked list that we will recieve, will be reversed.
To correct that, we can do a reverse inorder traversal of the tree, i.e. we will traverse through the right subtree before the left subtree.
Algorithm To Convert Binary Tree To Doubly Linked List
- Base Case – If the root is NULL, then simply return.
- Recur for the right subtree.
- Make the current root’s right point to head, and head’s left pointer to the the current root. By doing this, we are adding the current root to the head , and make the current root the head.
- After the above step, recur for the left subtree.
- Recursively, the tree will be traversed and the doubly linked list will be created as discussed.
Dry run To Convert Binary Tree To Doubly Linked List
Code Implementation To Convert Binary Tree To Doubly Linked List
#include#include struct Node { int data; struct Node *left; struct Node *right; }; struct Node* newNode(int data) { struct Node *node = (struct Node *)malloc(sizeof(struct Node)); node->data = data; node->left = node->right = NULL; return node; } void BToDLL(struct Node* root,struct Node* head) { if (root == NULL) return; BToDLL(root->right, head); root->right = head; if (head != NULL) head->left = root; head = root; BToDLL(root->left, head); } void printList(struct Node* head) { printf("Extracted Doubly Linked list is:\n"); while (head) { printf("%d ", head->data); head = head->right; } } int main() { struct Node* root = newNode(11); root->left = newNode(12); root->right = newNode(15); root->left->left = newNode(20); root->left->right = newNode(30); root->right->left = newNode(36); struct Node* head = NULL; BToDLL(root, head); printList(head); return 0; }
#includestruct Node { int data; Node *left, *right; }; Node* newNode(int data) { Node* node = new Node; node->data = data; node->left = node->right = NULL; return node; } void BToDLL(Node* root, Node*& head) { if (root == NULL) return; BToDLL(root->right, head); root->right = head; if (head != NULL) head->left = root; head = root; BToDLL(root->left, head); } void printList(Node* head) { printf("Extracted Doubly Linked list is:\n"); while (head) { printf("%d ", head->data); head = head->right; } } int main() { Node* root = newNode(11); root->left = newNode(12); root->right = newNode(15); root->left->left = newNode(20); root->left->right = newNode(30); root->right->left = newNode(36); Node* head = NULL; BToDLL(root, head); printList(head); return 0; }
class Node { int data; Node left, right; public Node(int data) { this.data = data; left = right = null; } } public class BinaryTree { Node root; Node head; void BToDLL(Node root) { if (root == null) return; BToDLL(root.right); root.right = head; if (head != null) head.left = root; head = root; BToDLL(root.left); } void printList(Node head) { System.out.println("Extracted Doubly Linked List is : "); while (head != null) { System.out.print(head.data + " "); head = head.right; } } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(11); tree.root.left = new Node(12); tree.root.right = new Node(15); tree.root.left.left = new Node(20); tree.root.left.right = new Node(30); tree.root.right.left = new Node(36); tree.BToDLL(tree.root); tree.printList(tree.head); } }
class Node: def __init__(self, data): self.right = None self.data = data self.left = None class BtoDll: def __init__(self): self.head = None self.tail = None def convert(self, root): if root is None: return self.convert(root.left) node = root if self.head is None: self.head = node else: self.tail.right = node node.left = self.tail self.tail = node self.convert(root.right) return self.head def BinaryTree2DoubleLinkedList(root): converter = BtoDll() return converter.convert(root) def print_dll(head): while head is not None: print(head.data, end=" ") head = head.right if __name__ == "__main__": root = Node(11) root.left = Node(12) root.right = Node(15) root.left.left = Node(20) root.left.right = Node(30) root.right.left = Node(36) head = BinaryTree2DoubleLinkedList(root) print("Extracted Doubly Linked list is:") print_dll(head)
Output :
Extracted Doubly Linked list is:
20 12 30 11 36 15
Time Complexity To Convert Binary Tree To Doubly Linked List: O(N), as tree traversal is needed.
Space Complexity To Convert Binary Tree To Doubly Linked List: O(N), for the recursion stack and the doubly linked list.
Now, let us have a look at another approach. The time complexities of both the approaches are the same.
Approach#2 To Convert Binary Tree To Doubly Linked List
The approach is going to be pretty simple. We will do the in-order traversal of the given tree, and one by one, change the links of each node that we encounter. The doubly linked list will be created In-Place. Let us have a look at the algorithm to get a clearer look.
Algorithm To Convert Binary Tree To Doubly Linked List
- Base Case – If the root is NULL, return NULL.
- Create a node prev and initialize with NULL.
- Recur for the left subtree.
- Now, if prev is NULL, then the root will be the head of our doubly linked list.
- Else, the left of the root will point to prev and the right of prev will point to the root.
- After the above conditional statements, change the value of prev to root.
- In the end, recur for the right subtree.
Code Implementation To Convert Binary Tree To Doubly Linked List
#include<stdio.h> #include<stdlib.h> struct node { int data; struct node* left; struct node* right; }; /* This is the core function to convert Tree to list. This function follows steps 1 and 2 of the above algorithm */ struct node* bintree2listUtil(struct node* root) { // Base case if (root == NULL) return root; // Convert the left subtree and link to root if (root->left != NULL) { // Convert the left subtree struct node* left = bintree2listUtil(root->left); // Find inorder predecessor. After this loop, left // will point to the inorder predecessor for (; left->right!=NULL; left=left->right); // Make root as next of the predecessor left->right = root; // Make predecessor as previous of root root->left = left; } // Convert the right subtree and link to root if (root->right!=NULL) { // Convert the right subtree struct node* right = bintree2listUtil(root->right); // Find inorder successor. After this loop, right // will point to the inorder successor for (; right->left!=NULL; right = right->left); // Make root as previous of successor right->left = root; // Make successor as next of root root->right = right; } return root; } // The main function that first calls bintree2listUtil(), then follows step 3 // of the above algorithm struct node* bintree2list(struct node *root) { // Base case if (root == NULL) return root; // Convert to DLL using bintree2listUtil() root = bintree2listUtil(root); // bintree2listUtil() returns root node of the converted // DLL. We need pointer to the leftmost node which is // head of the constructed DLL, so move to the leftmost node while (root->left != NULL) root = root->left; return (root); } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode(int data) { struct node* new_node = (struct node*)malloc(sizeof(struct node)); new_node->data = data; new_node->left = new_node->right = NULL; return (new_node); } /* Function to print nodes in a given doubly linked list */ void printList(struct node *node) { while (node!=NULL) { printf("%d ", node->data); node = node->right; } } /* Driver program to test above functions*/ int main() { // Let us create the tree shown in above diagram struct node *root = newNode(11); root->left = newNode(12); root->right = newNode(15); root->left->left = newNode(20); root->left->right = newNode(30); root->right->left = newNode(36); // Convert to DLL struct node *head = bintree2list(root); // Print the converted list printList(head); return 0; }
#include <iostream> using namespace std; struct node { int data; node* left; node* right; }; void BinaryTree2DoubleLinkedList(node *root, node **head) { // Base Case if (root == NULL) return; // Create a prev node static node* prev = NULL; // Recur for left subtree BinaryTree2DoubleLinkedList(root->left, head); // Make the leftmost element the head ofr DLL if (prev == NULL) *head = root; else { // Change links root->left = prev; prev->right = root; } // Change the value of prev to root prev = root; BinaryTree2DoubleLinkedList(root->right, head); } node* newNode(int data) { node* new_node = new node; new_node->data = data; new_node->left = new_node->right = NULL; return (new_node); } void printList(node *node) { while (node!=NULL) { cout << node->data << " "; node = node->right; } int main() { node *root = newNode(11); root->left = newNode(12); root->right = newNode(15); root->left->left = newNode(20); root->left->right = newNode(30); root->right->left = newNode(36); node *head = NULL; BinaryTree2DoubleLinkedList(root, &head); printList(head); return 0; }
class Node { int data; Node left, right; public Node(int data) { this.data = data; left = right = null; } } public class BinaryTree { Node root; Node head; static Node prev = null; void BinaryTree2DoubleLinkedList(Node root) { if (root == null) return; BinaryTree2DoubleLinkedList(root.left); if (prev == null) head = root; else { root.left = prev; prev.right = root; } prev = root; BinaryTree2DoubleLinkedList(root.right); } void printList(Node node) { while (node != null) { System.out.print(node.data + " "); node = node.right; } } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node(11); tree.root.left = new Node(12); tree.root.right = new Node(15); tree.root.left.left = new Node(20); tree.root.left.right = new Node(30); tree.root.right.left = new Node(36); tree.BinaryTree2DoubleLinkedList(tree.root); tree.printList(tree.head); } }
Output:
20 12 30 11 36 15
Time Complexity To Convert Binary Tree To Doubly Linked List: O(N), as a simple in-order traversal is needed.
Space Complexity To Convert Binary Tree To Doubly Linked List: O(N), the space required for recursion stack.
This blog discusses different approaches to convert binary tree to doubly linked list. This is a very important problem when it comes to coding interviews. Solving daily questions for the topics like linked list will definitely help in conquering your dream, you can follow this link Linked List for practicing more questions of linked list.
FAQ
1. How do you convert a given binary tree to a doubly linked list?
This can be achieved by traversing the tree in the in-order manner, that is, left the child -> root ->right node. Traverse left subtree and convert it into the doubly linked list by adding nodes to the end of the list. In this way, the leftmost node will become head of the list.
2. Is a doubly linked list faster?
Accessing elements in a Doubly Linked List is more efficient when compared to a Singly Linked List as both forward and backward traversal is possible. The time complexity of inserting or deleting a node at a given position (if the pointer to that position is given) in a singly linked list is O(n).
3. Which companies had recently asked the conversion of binary trees into doubly linked lists?
Amazon, Samsung, Indiamart, Flipkart and Zscaler in their recent interviews had asked this question.